Mitochondrial CDP-diacylglycerol synthase activity is due to the peripheral protein, TAMM41 and not due to the integral membrane protein, CDP-diacylglycerol synthase 1

نویسندگان

  • Nicholas J. Blunsom
  • Evelyn Gomez-Espinosa
  • Tim G. Ashlin
  • Shamshad Cockcroft
چکیده

CDP diacylglycerol synthase (CDS) catalyses the conversion of phosphatidic acid (PA) to CDP-diacylglycerol, an essential intermediate in the synthesis of phosphatidylglycerol, cardiolipin and phosphatidylinositol (PI). CDS activity has been identified in mitochondria and endoplasmic reticulum of mammalian cells apparently encoded by two highly-related genes, CDS1 and CDS2. Cardiolipin is exclusively synthesised in mitochondria and recent studies in cardiomyocytes suggest that the peroxisome proliferator-activated receptor γ coactivator 1 (PGC-1α and β) serve as transcriptional regulators of mitochondrial biogenesis and up-regulate the transcription of the CDS1 gene. Here we have examined whether CDS1 is responsible for the mitochondrial CDS activity. We report that differentiation of H9c2 cells with retinoic acid towards cardiomyocytes is accompanied by increased expression of mitochondrial proteins, oxygen consumption, and expression of the PA/PI binding protein, PITPNC1, and CDS1 immunoreactivity. Both CDS1 immunoreactivity and CDS activity were found in mitochondria of H9c2 cells as well as in rat heart, liver and brain mitochondria. However, the CDS1 immunoreactivity was traced to a peripheral p55 cross-reactive mitochondrial protein and the mitochondrial CDS activity was due to a peripheral mitochondrial protein, TAMM41, not an integral membrane protein as expected for CDS1. TAMM41 is the mammalian equivalent of the recently identified yeast protein, Tam41. Knockdown of TAMM41 resulted in decreased mitochondrial CDS activity, decreased cardiolipin levels and a decrease in oxygen consumption. We conclude that the CDS activity present in mitochondria is mainly due to TAMM41, which is required for normal mitochondrial function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of yeast phosphatidylserine synthase and phosphatidylinositol synthase activities by phospholipids in Triton X-100/phospholipid mixed micelles.

The regulation of purified yeast membrane-associated phosphatidylserine synthase (CDP-diacylglycerol:L-serine O-phosphatidyltransferase, EC 2.7.8.8) and phosphatidylinositol synthase (CDP-diacylglycerol:myo-inositol 3-phosphatidyltransferase, EC 2.7.8.11) activities by phospholipids was examined using Triton X-100/phospholipid mixed micelles. Phosphatidate, phosphatidylcholine, and phosphatidyl...

متن کامل

Solubilization of microsomal-associated phosphatidylinositol synthase from germinating soybeans.

CDP-1,2-diacyl-sn-glycerol (CDP-diacylglycerol):myo-inositol phosphatidyltransferase (EC 2.7.8.11, phosphatidylinositol synthase) catalyzes the final step in the de novo synthesis of phosphatidylinositol in the endoplasmic reticulum fraction of germinating soybeans (Glycine max L. var Cutler 71). A variety of solubilization agents were examined for their ability to release phosphatidylinositol ...

متن کامل

Purification and characterization of CDP-diacylglycerol synthase from Saccharomyces cerevisiae.

The membrane-associated phospholipid biosynthetic enzyme CDP-diacylglycerol synthase (CTP:phosphatidate cytidylyltransferase, EC 2.7.7.41) was purified 2,300-fold from Saccharomyces cerevisiae. The purification procedure included Triton X-100 solubilization of mitochondrial membranes, CDP-diacylglycerol-Sepharose affinity chromatography, and hydroxylapatite chromatography. The procedure resulte...

متن کامل

Characterization of a salt-extractable phosphatidylinositol synthase from rat pituitary-tumour membranes.

Solubilization of phosphatidylinositol (PtdIns) synthase (CDP-diacylglycerol: myo-inositol 3-phosphatidyltransferase, EC 2.7.8.11) from rat pituitary (GH3) tumours was investigated. PtdIns synthase activity was partially extracted from crude membranes by 3 M-KCl. Prior separation of membranes revealed that a greater proportion of plasma-membrane PtdIns synthase activity was salt-extractable tha...

متن کامل

Regulation of phospholipid biosynthesis in Saccharomyces cerevisiae by cyclic AMP-dependent protein kinase.

The addition of cyclic AMP (cAMP) to Saccharomyces cerevisiae cyr1 mutant cells resulted in an increase in the rate of phosphatidylinositol synthesis at the expense of phosphatidylserine synthesis. The decrease in phosphatidylserine synthesis correlated with the down regulation of phosphatidylserine synthase activity by cAMP-dependent protein kinase phosphorylation. The increase in phosphatidyl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1863  شماره 

صفحات  -

تاریخ انتشار 2018